
PDIoT Coursework (2019-20)

BLE Step Counter

PHIPPS Robert s1601921
XIONG Jiayuan s1738850

Abstract
This project involved the prototyping and development of an IoT step counting device, working across
multiple embedded development platforms and interfacing with a companion Android app allowing the

user to view data collected. Communication of data was achieved by using the Bluetooth Low Energy 4.1
standard. Platforms include the Nordic Semiconductor Thingy:52 BLE sensor device and NRF52-DK

MbedOS development board.

Peak detection along with various smoothing techniques were used to process data from the gyroscope data
of an Inertial Measurement Unit, which allowed us to require minimal processing power and keep all data

manipulation within the NRF52 for our final implementation.

Principles and Design of IoT Systems
Informatics, University of Edinburgh

January 2020

Typeset in LATEX

1 Introduction

1.1 Project aims

At a most basic level, the project goal was to im-
plement a simple device to track steps and relay this
information to a user. It was specified that we should
make use of Bluetooth Low Energy for communica-
tion of the small, low power tracking device to our
Android app which displays the step count and al-
lows the device to be controlled.

1.2 Method adopted

We opted after much consideration to use a compara-
tively simple peak detection algorithm, which allowed
us to keep the processing requirements fairly low.

We first prototyped our algorithm using data pre-
viously collected from the “orient-android” [1] appli-
cation interfacing with the Nordic Thingy:521 pro-
totyping platform. Working with a Jupyter Note-
book2 we then used Pandas, SciPy and NumPy
tools to visualise, analyse and implement a method
for identifying steps from the data recorded. Once
this algorithm was completed, we worked to port its
logic across to first an Android app, which streamed
data direct from the Thingy and processed it in
batches before updating the user display. Finally
we ported the logic one last time to run embedded
on a Nordic NRF52-DK MbedOS based development
board3, which broadcast the current step count as a
Generic Attribute defined within the Bluetooth Low
Energy standard [2], and read by another companion
Android app to display that data to the user.

The benefit of this approach meant that we could
implement our algorithm entirely with Mbed OS
C++, without an external dependencies on servers,
and without requiring the Android device to expend
battery on processing the data.

1Nordic Thingy:52: https://www.nordicsemi.
com/Software-and-tools/Prototyping-platforms/
Nordic-Thingy-52

2Jupyter Notebook project webpage: https://jupyter.org
3Nordic NRF52DK: https://www.nordicsemi.com/

Software-and-Tools/Development-Kits/nRF52-DK

1.3 Summary of Results

Based on the final NRF52-DK based implementation,
we managed to achieve the following levels of accu-
racy:

Activity type Accuracy (%)
Walking 97%
Running 95.2%
Upstairs 87%

Downstairs 94.2%

Table 1: Summary of accuracy for NRF52-DK imple-
mentation

Based on review of other implementations and
comparisons with existing mass-market step track-
ing devices, these are very high, especially given the
limited development time, comparatively simple data
processing and our success in squeezing all the logic
into the NRF52-DK’s embedded programming envi-
ronment.

2 Literature Survey

2.1 Step tracking methodologies

The first article of relevance is one from Analog Dia-
logue, where it explores a 3 axis digital pedometer [3].
This (like many others) outlines a processing pipeline
whereby the data coming from the sensor is first fil-
tered, then a dynamic peak detection algorithm is
applied to count the number of cycles of the pattern,
from which a number of steps can be inferred. How-
ever, in this case they are making use of multiple axis
of an accelerometer whereas we eventually opted to
use a single axis of our IMU’s gyroscope.

The next article (from Sensors) was targeting
step detection using the commodity hardware within
smartphones [4]. Their method involved extracting
gyroscope data from the IMU and making use of what
we know about the cyclic nature of walking to help
improve the accuracy of their detection. Their ar-
ticle also covers the four common methods of step
detection, being peak detection, thresholding, zero-
crossing and autocorrelation. We ended up making

1

https://www.nordicsemi.com/Software-and-tools/Prototyping-platforms/Nordic-Thingy-52
https://www.nordicsemi.com/Software-and-tools/Prototyping-platforms/Nordic-Thingy-52
https://www.nordicsemi.com/Software-and-tools/Prototyping-platforms/Nordic-Thingy-52
https://jupyter.org
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52-DK
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52-DK

use of a combination of thresholding and peak detec-
tion methods in our implementation.

2.2 Data smoothing algorithms

When looking for smoothing algorithms, we came
across references to the Savitzky-Golay method [5].
This somewhat vintage piece of research outlines
making use of a modified version of moving average
smoothing, making use of convolutional methods to
fit a low degree polynomial to the dataset. It is es-
pecially beneficial in smoothing and increasing the
precision of digital signals. On further investigation,
it became clear that its accuracy could be improved
by introducing an aspect of moving averages as a pre-
processing step [6].

2.3 Existing mass-market products

Albeit far less formal, we also investigated the form
factors and feature sets of existing commercial step-
tracking devices, and tried to infer some idea of how
they go about tracking their wearer’s activity.

The most obvious example of this is the FitBit [7]
series of activity trackers, which tend to be worn as
a wristband. These are very popular, so it is clear
that consumers are happy to wear such a device.
Back in 2006, Nike released the Nike+iPod sports
kit [8]. This included a small transmitter that was
embedded in a specially compatible shoes, and com-
municated with various Apple devices as well as a
Nike+ Sportwatch. With improvements in the sen-
sors within newer devices, as well to avoid the incon-
venience of having to embed a module in your shoe
(which needed charging), Nike opted to release a new
version of their system as an app making use of just
the sensors in the new iPhones and iPods, negating
the need for a dedicated tracking chip. This failure
shows that shoe-mounted sensors are unlikely to be
popular with consumers, and it is possible to obtain
accurate enough results from sensors worn in more
convenient locations.

In most of these products, the data processing and
actual step tracking is carried out on-board, as they
generally have some form of display to show the cur-
rent steps even if the paired smartphone is discon-

nected, and could all gracefully handle Bluetooth dis-
connections for whatever reason.

3 Methodology

3.1 Development pipeline

Following the structure given to us in the tutorial
schedule, we effectively developed three very simi-
lar step tracking systems, starting with convenient,
high-level and high performance systems (Python
and Jupyter Notebook), moving to Java on Android
and finally to C++ on MbedOS. This allowed us
to revise streamline our algorithm, while still allow-
ing easy prototyping during the concept development
stage.

Our first implementation made use of batch data
recorded from the "Orient-android" app [1], recorded
in CSV format and processed offline from within a
Jupyter Notebook environment, fitted out with a full
suite of data analysis tools like SciPy, NumPy and
Pandas. We also contributed to the "pdiot-data"
repository4 which was used by the whole cohort to
exchange data recorded from their testing.

Once we had prototyped a step detection algo-
rithm to run offline, we modified the existing "orient-
android" app used to record gyroscope data to the
CSV files for analysis, and added a port of the step
detection pipeline into the Java source code. This
allowed us to process data and return a step count
on-the-fly, and display the result in near to real time
on the Android device. This still streamed all IMU
data from the Thingy:52 unprocessed, and performed
all analysis within the app, which would have a non-
negligible additional battery draw for the end user.
Due to how we had the app configured, it also re-
quired the app to be open and running in the fore-
ground for it to continue to keep track of steps, and
would ignore any steps taken for periods when the
phone lost Bluetooth connection to the Thingy:52.

The final iteration was another port and revision
of that initial algorithm, this time to the C++ en-

4"pdiot-data" - shared motion capture data from
the "orient-android" app: https://github.com/specknet/
pdiot-data

2

https://github.com/specknet/pdiot-data
https://github.com/specknet/pdiot-data

vironment provided within MbedOS5, the embedded
RTOS running on the Nordic NRF52-DK develop-
ment board. To start with, we experimented with
the provided MPU-9250 Inertial Measurement Unit
by having the NRF dump live sensor values out over
serial console to either a PC or an Android serial
console app6. Once we had reliable gyroscope data
from the IMU, we then began to port over the step
detection algorithm, finding similarly functioning li-
braries to replace those used on the other versions
of the app. Finally, once we had the step count be-
ing printed over serial, we modified an existing BLE
GATT server example implementation [9] to carry a
simple 32 bit payload, to be used as an integer con-
taining the step count.

3.2 IMU location and selected data
To get started we plotted data from all of the sen-
sors and all of the tested sensor locations (Figure 3).
From looking at this data it is clear that the dataset
with the most obvious cyclic pattern is the gyroscope
z-axis, both on the foot and on the wrist. As the foot
is a fairly awkward location to place a sensor, and
we have already seen success in tracking steps with
wrist-mounted devices, it was decided to make use of
the gyroscope z-axis on the wrist (Figure 2. The use
of the magnitude calculated from all three gyroscope
axis was also investigated, as it would allow perfor-
mance to be maintained even if the device were not
to be mounted in the expected location, however as it
is to be wrist mounted, there is very little likelyhood
of the orientation being incorrect.

5MbedOS: https://www.mbed.com/en/platform/mbed-os/
6USB Serial Console (Google Play Store): https:

//play.google.com/store/apps/details?id=jp.sugnakys.
usbserialconsole

Figure 1: Gyroscope z-axis data before and after Sav-
Golay filtering

Figure 2: Raw gyroscope z-axis data from wrist
mounted sensor

3

https://www.mbed.com/en/platform/mbed-os/
https://play.google.com/store/apps/details?id=jp.sugnakys.usbserialconsole
https://play.google.com/store/apps/details?id=jp.sugnakys.usbserialconsole
https://play.google.com/store/apps/details?id=jp.sugnakys.usbserialconsole

Figure 3: Comparison of sensor locations and axes
4

3.3 Step detection algorithm

Multiple options were investigated to allow us to
achieve this goal, including the use of cloud compute
resources running machine learning frameworks such
as TensorFlow7, however we were very keen to en-
sure we didn’t over-engineer our solution. After ex-
perimenting with methods, it became clear that it
should be possible to achieve fairly respectable accu-
racies using comparatively very straightforward pro-
cessing. This would also allow us to keep as much of
the processing as possible local, and eventually con-
tained within the tracker itself.

The system processes sensor data in chunks of 100
samples, this minimises complexity of implementa-
tion, however does occasionally result in artefacts if
there is a sudden change in activity on the boundary
between two sampling windows. Based on our test-
ing however, this doesn’t seem to adversely affect the
accuracy.

First, to optimise the batch of samples for pro-
cessing, we use simple thresholds to trigger different
smoothing profiles, making use of Savitzky-Golay fil-
tering. At this stage we also identify whether there is
enough movement in the data to be processed, oth-
erwise the batch is ignored.

Figure 4: Illustration of peak detection with thresh-
olding

Once the data has been filtered (Figure 1), we make
use of one of two signal detection algorithms. For the
Android-based Thingy:52 implementation we make
use of a smoothed Z score with moving average and

7Google TensorFlow Project: https://www.tensorflow.
org

standard deviation based thresholds. This is effec-
tively a peak detection algorithm, but with dynam-
ically calculated thresholds. It is a slightly modified
version of the algorithm set out by Jean-Paul in a
StackOverflow response titled "Robust peak detec-
tion algorithm (using z-scores)" [10].

For the NRF52-DK implementation, a simple
thresholded peak detection was used, with fixed
thresholds calculated ahead of time when each block
of 100 sensor samples is passed to the subroutine.
This seemed to have a far lower tendency to over-
fit, and had very similar accuracy with the benefit of
running far quicker on the embedded hardware.

It also works to ensure that there is a zero-cross
between peaks by post-processing the signals output
from the algorithm. Finally, there is a hard-coded
minimum deviation on both implementations to en-
sure that periods of no activity do not result in noise
being amplified and counted as steps.

In the spirit of IoT and SpeckNet, we decided it
was far more worthwhile to target our implementa-
tion to replicate this on-board processing as much as
possible, making use of the processing power we have
at the "edge" as opposed to centralising this onto a
cloud hosted backend. This also greatly reduced the
amount of data being transferred over the Bluetooth
connection, and allowed our implementations to run
offline without an internet connection.

5

https://www.tensorflow.org
https://www.tensorflow.org

def mainloop():
gyrodata.append(getgyrodata())
if len(gyrodata) > COUNT_WINDOW:
process data
(min, max, range) = getminmaxrange(gyrodata)
if range < minthresh:

gyrodata = []
return

if range < lowthresh:
filtered = savgolay(gyros, walklag, walkdegree)
signals = simplepeakdetection(filtered, walkparams)
_globalstepcount += transitions

else:
filtered = savgolay(gyros, runlag, rundegree)
signals = simplepeakdetection(filtered, runparams)
_globalstepcount += transitions

def simplepeakdetection(data, avg, range, threshmult = 0.80)
threshold = range*0.5*threshmult
threshold = 1.0 if threshold < 1.0
iqmin = avg - threshold
iqmax = avg + threshold

signals = [];
for sample in data:

if (iqm < sample < iqx) then signals.append(0) # within threshold
else if (sample < iqm) then signals.append(-1) # below threshold
else if (p > iqx) then signals.append(1) # above threshold

find transitions:
lastsignal = 0
count = 0
for signal in signals:

if signal is not lastsignal then count += 1
lastsignal = signal

return count;

Figure 5: Pseudocode for basic step detection

6

3.4 BLE GATT communication pro-
file and wireless

Originally, data was obtained from the Thingy:52 us-
ing its standard BLE attributes, as this board was
running factory firmware. This meant that we were
reading in raw sensor information.

Once the NRF52-DK was successfully counting
steps and outputting the data over serial, we then
needed to find a way to pass this data to the com-
panion Android app. Unfortunately there is no stan-
dard attribute defined within the GATT specifica-
tion [2], so for the purposes of our application the
RUNNING_SPEED_AND_CADENCE device UUID was re-
purposed. It is not an ideal fit, as we are not broad-
casting the rate, but the cumulative step count value,
however it seemed the closest option within the spec-
ification. The Bluetooth stack is based around the
Heart Rate service example provided within the Mbe-
dOS documentation [9].

This initially broadcast data using the Heart Rate
Monitor characteristic, however this used a single 8
bit word for the data. This would only have offered
a maximum value of 256 (2^8), which while perfectly
appropriate for heart rates in BPM, would be very
quickly reached in our use case. It was modified to
use two 16 bit words, and the generic "Analog" char-
acteristic with ID 0x2A58, this gives us a theoretical
maximum value of 65,536 (2^16) for our character-
istic, which seems more appropriate, although could
still be rather low in some use cases. The character-
istic is defined in Figure 7.

The "runner" service for the sensor is scheduled to
run the update routine every 80ms, which triggers
the sensors to be polled, and the BLE characteristic
is updated every time the data buffer contains 100
entries. This means that the step count is updated
approximately every 8 seconds.

3.5 Software and firmware architec-
ture

For the final implementation running on the NRF52-
DK, all processing of data is carried out within the
Mbed OS on the development board. Only the cur-
rent step count is broadcast over BLE. This means

the companion Android application simply reads the
characteristic’s value, and displays it to the user.

The NRF-52 firmware is structured around the fol-
lowing files:

• main.cpp: Entrypoint to the firmware

– main(): Creates instance of the BLE
framework, initialises the IMU and attaches
the runner instance to the BLE service.

– StepCountRunner: defines UUID for
the GATT service and creates event
queue/scheduler.

– updateSensor(): reads data from IMU
sensor and triggers processBuffer() once
it has read 100 (or COUNT_WINDOW) samples.
Also flashes LED2.

– processBuffer(): performs smoothing
and signal detection on current buffer of
gyro values.

– simplepeakdetection(): performs
smoothing and signal detection on current
buffer of gyro values.

• SGSmooth.cpp: library to implement Savitzy-
Golay smoothing

– sg_smooth(vector, width, degree):
performs smoothing on array provided as
a vector of floats with moving average of
window width and fitting to a polynomial
of the degree given

– This library was sourced from the Linear
Algebra Toolkit created by GitHub user
thatcristoph [11]

• stepcountservice.cpp: definitions for the BLE
service

Based off of the Heart Rate Monitor service
from the MbedOS examples repository and mod-
ified for use in this project [9]

Figure 6: NRF52-DK firmware file structure sum-
mary

7

/* representation for the bytes of the step count characteristic. */
struct StepCountValueBytes {

static const unsigned MAX_VALUE_BYTES = 2;
/* no Flags, and up to two bytes for step count. */

StepCountValueBytes(uint16_t stepCount) : valueBytes() {
updateStepCount(stepCount);

}

void updateStepCount(uint16_t stepCount) {
// split 16bit unsigned int into two 8bit unsigned ints
valueBytes[0] = (uint8_t)(stepCount & 0xFF);
valueBytes[1] = (uint8_t)(stepCount >> 8);

}
}

Figure 7: Definition of step count value BLE characteristic bytes

4 Results

4.1 Real-world testing methodology

To test the performance of the trackers, we wore
them and walked, ran, climbed and descended stairs
around Appleton Tower and in various other build-
ings, keeping track of the count ourselves and com-
paring that result to the measured steps by each im-
plementation. With the testing for stairs, we included
any small landings and turns in the count.

Additionally, we tested scenarios such as leaving
the mobile device away from where we were walking
to cause a Bluetooth connection failure, allowing us
to test how the implementations would handle such
an event. In these tests, the NRF52-DK based im-
plementation obviously was superior, as it continued
to count steps even with a failed connection, as all
processing was on-board. The Thingy:52 implemen-
tation required an app restart after losing connection,
which caused it to lose the current step count as well
as any data from the period when the connection was
lost.

4.2 Tracking evaluation

A summary of the results from our testing is avail-
able in Table 2, with the raw data used for those
calculations displayed in Table 3.

We achieved a consistent accuracy in the region of
90%, with up to 97% for walking with the NRF52-
DK implementation. Both implementations tended
to under-count steps, which implies that with further
tuning of detection parameters we should be able to
bias the tracking such that the average accuracy is
centered around 100%.

For the Thingy:52 implementation, it particularly
had trouble with running, this is likely due to the
lower sampling rate, caused by the bandwidth limit
on the BLE connection being used to stream sen-
sor data to the companion app. This lower sam-
ple rate effectively acted as a low-pass filter, which
with higher-frequency activity (running) caused some
steps to be ignored.

Stairs were also a challenge, due to the less cyclic
nature of motion, as well as heavier steps caus-
ing high-frequency noise in the data. Thankfully,
the magnitude based activity detection and auto-
matic calibration of point detection thresholds in the
NRF52-DK implementation managed to improve ac-
curacy considerably for these activities.

8

Activity Actual steps Number of tests Median counted Accuracy (%)
Thingy:52 and streaming gyro data to Android

Walking 100 5 92 92%
Running 100 5 84 84.8%

Ascending stairs 100 5 106 94.4%
Descending stairs 100 5 92 90.8%
NRF52-DK with all on-board processing

Walking 100 5 97 97%
Running 100 5 101 95.2%

Ascending stairs 100 5 90 87%
Descending stairs 100 5 98 94.2%

Table 2: Accuracy of both implementations of the step tracker

Activity Actual steps Runs Counted steps per test run
Thingy:52 and streaming gyro data to Android

Walking 100 5 98, 96, 84, 90, 92
Running 100 5 80, 84, 82, 90, 88

Ascending stairs 100 5 106, 104, 106, 102, 110
Descending stairs 100 5 92, 92, 94, 88, 88
NRF52-DK with all on-board processing

Walking 100 5 96, 101, 97, 96, 102
Running 100 5 103, 93, 101, 92, 105

Ascending stairs 100 5 85, 120, 92, 90, 88
Descending stairs 100 5 105, 91, 98, 93, 106

Table 3: Raw test results

9

4.3 User experience (UX)

Figure 8: Thingy:52 (left) and NRF52-DK (right)
companion applications in normal use

For the purposes of this project, the apps devel-
oped are incredibly bare-bones (Figure 8), however
thanks to that, maintaining a simple UI was easy. In
the case of the NRF52-DK implementation, we sim-
ply have a counter displayed, along with colour coded
backgrounds to show connection status: orange for
connecting, blue for connected and red for discon-
nected. The Thingy:52 implementation included live
graphs of the gyroscope data, which were helpful dur-
ing testing and development. These were excluded
from the later NRF52-DK app, as this information
was not broadcast over BLE.

A major area of UX that would need to be im-
proved is the Bluetooth pairing process, as both apps
require that the device’s MAC address is hard-coded
into the application at compile time. Implement-
ing some form of simple discovery flow for new users
would be a very high priority were these to be devel-
oped further.

Additionally, neither of the apps are able to main-
tain a connection unless the app is running and in
the foreground of the Android companion device. In
the case of the NRF52-DK implementation, this is
less of an issue as it is able to continue tracking inde-

pendently, but for the Thingy:52 based app, this is a
major issue as it is only able to track while the app
is running and connected.

5 Conclusion

Based on our testing, it appears that there is not a
huge amount to be gained from too much additional
processing on the data, as thanks to our chosen IMU
positioning, we receive a very clean and obviously
cyclic dataform. This has the added advantage of
minimising processing power requirements on both
the companion smartphone and within the embedded
processor. This should contribute to a higher battery
life.

An interesting advantage of the NRF52-DK imple-
mentation was that we were able to achieve a higher
level of accuracy simply due to the fact we were able
to poll the gyroscope at a higher rate, as we were not
constrained by the bandwidth of the Bluetooth LE
4.0 connection to the companion app.

5.1 Caveats and potential improve-
ments

Given the development process, the device has only
received intensive testing from us, and there is a fairly
high chance that we have overfit the detection algo-
rithms to our specific walking styles. A potential ex-
tension would be to make use of cloud based machine
learning to automatically tune the detection param-
eters to best fit the individual’s gait, and to allow us
to improve the robustness of our activity detection.

5.2 Reflection

This project was an interesting exploration of a dif-
ferent side of IoT, as in most cases the focus is on
the "internet" part of the implementation, with very
little thought given to the hardware actually gather-
ing the data and reacting to the world. This was our
first time working with the Mbed development envi-
ronment, and experience of working with such limited
resources was motivation to ensure that our solution
was not over-engineered, as opposed to the often used

10

method of throwing more computation power, data
and lots of machine learning at the problem, which
could probably have been solved just as well with
some well-thought-out statistics, as in this case.

The use of low bandwidth BLE as opposed to
TCP/IP for communication encouraged us to em-
brace "edge computing", by trying to perform as
much (or all) of the data processing as close to the
sensors as possible. Again, this was using far lower-
level programming languages, but by progressively
working through from a high-level Python based
toolchain, down to the C++ running on the NRF52-
DK, it was surprisingly easy to maintain functionality
across platforms.

References
[1] A. Bates. Orient-android. [Online]. Available:

https://github.com/specknet/orient-android

[2] (2019, December) Gatt characteris-
tics. Bluetooth SIG Inc. [Online].
Available: https://www.bluetooth.com/
specifications/gatt/characteristics/

[3] N. Zhao, “Full-featured pedometer design real-
ized with 3-axis digital accelerometer,” Analog
Dialogue, vol. 44, no. 2, June 2010. [Online].
Available: https://www.analog.com/media/en/
analog-dialogue/volume-44/number-2/articles/
pedometer-design-3-axis-digital-acceler.pdf

[4] X. Kang, B. Huang, and G. Qi, “A novel walking
detection and step counting algorithm using
unconstrained smartphones,” Sensors (Basel),
vol. 18, no. 297, January 2018. [Online].
Available: http://dx.doi.org/10.3390/s18010297

[5] A. Savitzky and M. J. E. Golay, “Smoothing and
differentiation of data by simplified least squares
procedures,” Analytical Chemistry, vol. 36, no. 8,
pp. 1627–1638, July 1964.

[6] H. Azami, K. Mohammadi, and B. Bozorgtabar,
“An improved signal segmentation using moving
average and savitzky-golay filter,” Journal of
Signal and Information Processing, vol. 3,

pp. 39–44, 2012. [Online]. Available: http:
//dx.doi.org/10.4236/jsip.2012.31006

[7] (December, 2019) Fitbit activity trackers.
[Online]. Available: https://www.fitbit.com/
uk/home

[8] Wikipedia. Nike+. [Online]. Available: https:
//en.wikipedia.org/wiki/Nike%2B

[9] ARMmbed, “mbed-os-example-ble: Ble demos
using mbed os and mbed cli.” [Online].
Available: https://github.com/ARMmbed/
mbed-os-example-ble

[10] J.-P. van Brakel, “Robust peak detection
algorithm (using z-scores),” StackOverflow,
March 2014. [Online]. Available: https://
stackoverflow.com/a/43512887

[11] thatcristoph. (2012, December) Linear al-
gebra "toolkit". [Online]. Available: https:
//github.com/thatchristoph/vmd-cvs-github/
tree/master/plugins/signalproc

11

https://github.com/specknet/orient-android
https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.analog.com/media/en/analog-dialogue/volume-44/number-2/articles/pedometer-design-3-axis-digital-acceler.pdf
https://www.analog.com/media/en/analog-dialogue/volume-44/number-2/articles/pedometer-design-3-axis-digital-acceler.pdf
https://www.analog.com/media/en/analog-dialogue/volume-44/number-2/articles/pedometer-design-3-axis-digital-acceler.pdf
http://dx.doi.org/10.3390/s18010297
http://dx.doi.org/10.4236/jsip.2012.31006
http://dx.doi.org/10.4236/jsip.2012.31006
https://www.fitbit.com/uk/home
https://www.fitbit.com/uk/home
https://en.wikipedia.org/wiki/Nike%2B
https://en.wikipedia.org/wiki/Nike%2B
https://github.com/ARMmbed/mbed-os-example-ble
https://github.com/ARMmbed/mbed-os-example-ble
https://stackoverflow.com/a/43512887
https://stackoverflow.com/a/43512887
https://github.com/thatchristoph/vmd-cvs-github/tree/master/plugins/signalproc
https://github.com/thatchristoph/vmd-cvs-github/tree/master/plugins/signalproc
https://github.com/thatchristoph/vmd-cvs-github/tree/master/plugins/signalproc

	Introduction
	Project aims
	Method adopted
	Summary of Results

	Literature Survey
	Step tracking methodologies
	Data smoothing algorithms
	Existing mass-market products

	Methodology
	Development pipeline
	IMU location and selected data
	Step detection algorithm
	BLE GATT communication profile and wireless
	Software and firmware architecture

	Results
	Real-world testing methodology
	Tracking evaluation
	User experience (UX)

	Conclusion
	Caveats and potential improvements
	Reflection

